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INTRODUCTION

The goal of this research is to develop theoretical, computational, and experimental tech-

niques for predicting the effects of irregular topography on long range sound propagation in the

atmosphere. Irregulax topography here is understood to imply a ground surface that (1) is not

idealizable _ being perfectly flat or (2) that is not idealizable as having a constant specific acous-

tic impedance. The intere,Jt of this study focuses on circumstances where the propagation is

similar to what might be expected for noise from low-altitude air vehicles flying over suburban

or rural terrain, such that rays from the source arrive at angles close to grazing incidence.

PERSONNEL

In addition to the. principal investigators, A. D. Pierce and G. L. Main, a graduate student,

James Kearns, and two senior undergraduate students in mechanical engineering, Daniel Benator

and James Parish, are presently working on the project. The students have up until now been pri-

marily engaged in the construction of the experimental facility, in the construction of equipment,

in the procurement of equipment and instrumentation, and in the testing of the components of

the facility. Exploratory experiments are now beginning, with all three students participating.

The theoretical work has up until now been carried out mostly by Pierce and Main, witb tutorial

sessions underway to develop Kearn's participation in this phase of the research.

All of the personnel concerned with the project visited NASA Langley Research Center in

November 1985 and discussed complementary NASA and Geocgia Tech research activities with

the NASA technical ol_icer, Dr. John Preisser, and his colleagues.
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LABORATORY FACILITY AND INSTRUMENTATION

The principal activityduring the firstyear of the subject grant has been the construction

of a laboratory facility(Fig. I) that will be used in subsequent experiments. Major components

of the laboratory are an acoustic source, a model topographical surface with which the acoustic

signal interacts,and a data acquisition and analysis system. The room housing the laboratory

(Fig. 2) is a standard university small laboratory room of dimensions 8.2m by 6.1m by 4.3 m.

The walls are cinderblock, the floor is tiled,and some walls are lined with shelves, so in no

sense does this space approax.h the ideal of an anechoic chamber. However, the room, dubbed

the "Atmosphcric Sound Propagation Facility"within Georgia Tech, issolely dedicated to this

project. The invest._gatorshave been developing the instrumentation system to be such that the

echoes from walls,floor,and ceilingcan be gated out in time.

Base tables for topographic experiments

Four tables were made to be used for the scale model experimentz. Each table is 1.2 meter

wide by 2.4 meter long and 0.9 meter high. The tables were constructed so that they could be

bolted together, forming one table 4.9 meter long by 2.4 meter wide. The table top is CDX

plywood, 2 cm thick. The table frame isconstructed of two-by-six (5 cm by 15 cm) yellow pine

grade #I planks; the table legs are constructed of four-by-four (10 cm by 10 cm) yellow pine

grade #2 beams. The fasternersholding the table together are machine bolts and wood screws,

so the table assembly isfullyportable.

The table frame was made by running two 2.4 meter length two-by-sixes parallel to each

other, 1.2 meter apart. Then fiveequally spaced two-by-sixes were mounted in between these

firsttwo. Next, a shelfwas cut into the four-by-fours,so that they would fitinto the corners of

the frame and stillleave some of the frame resting on the shelf. Each four-by-four was bolted

into the frame with three machine bolts for extra stre,lgth.Then the plywood was placed on the

frame and secured with wood screws.

In the experiments currently beginning, the four tables are bolted together and are being used

in the 4.9m by 2.4m configuraf;ion;the term 'table'implies this configuration in the remainder

of this report.
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i0 kV
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Figure 1. General diagram of experimental configuration for studying sound propaga-

tion over model topographical ridge. Here C is capacitor, R is resistor, P is

power supply, IBM PC is IBM personal computer, ISC is RC Electronics A/'D

conversion instrumentation, A is amplifier, and P is preamplif_.r
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OF POOR Qj_L_TY

Figure 2. Photogr _)finteriorof laboratory room used in the study, showing most of

the relevan 3uipment and the experimental facility.
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A curved surface (Fig. 3) was constructed to be mounted on the table and used as a

laboratory scale model of a topographical ridge. The contour of the surface has the shape of an

arc of a circle.

Four basic templates (or ribs) fo_ the ridge were cut from a piece cf 1.2 meter by 2.4 meter

exterior plywood, 2 cm thick. The top edge of each template was an arc of a circle;the bottom

edge was the chord of a circle.The chord was 2.4 meter long and the radius of the circlewas

such that the maximum height of the arc relativeto the chord was 29 cm. Thus the radius of

curvature of the arc was approximately 2.5 meter.

Identicalhalves of the curved surface superstructure to the table assemblage were constructed

as follows. For each half,a pair of templates were each secured to a 1.24 m by 2.4 m base board

of CDX plywood (2 cm thickness) by nailing a strip of 3.8 cm by 3.8 cm yellow pine to each

side of the template and then nailing the stripsto the CDX plywood. The curved topographical

surface was then _chieved by bending plywood, sheets,0.5 cm thick and 1.24 cm wide, over the

template arcs and then nailingthe plywood to the arcs.

Spark Generator

A spark gap (Fig. 4 and Fig. 5) was constructed to serve as an impulsi4e acoustic source.

Sound isgenerated when a sudden current surge occurs across a 2-3 rnm air gap. As indicated

in Fig. 6, a 10 kV power supply provides charge at the rated voltage to a 1 uF capacitor. A 1

Mfl resistoris in serieswith the capacitor and the power supply; the voltage across the spark

gap is virtuallythe same as that across the capacitor plates because of the negligibleelectrical

resistanceof the 0.5 cm diameter welding cables that carry current _o and from the gap. The gap

isbetween two 0.5 cm diameter tungsten electrodes that form the terminal points of the welding

cables. The electrodes are held in position by a two-pronged plexiglassfork which ismounted

on a tripod stand (Fig. 7). A rotary grinder is used to shape and polish the electrode points.

This spark gap generates an acoustical signal (Fig. 8) whose spectral content is dominated by

frequeacies of the order of 10 kHz and whose peak amplitude at a distance of the order of I m

corresponds to roughly 110 dB.
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Figure 3. Close-up photograph of oblique side view of curved ridge resting on table that

wa_ constructed for studying propagation effects of topograph i,.,n ridges.
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Figure 4. Design drawing of spark gap apparatus used in generation of transient acoustic

pulses.
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Figure 5. Photograph of spark jumping across gap between electrodes held in plexiglas

frame.
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077 cm wire /

spark gap
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Capacitor
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Figure 6. Diagram of spark generation apparatus. Electrodes available for use are either

copper or tungsten.
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Figure 7. Photograph of spark generation apparatds, showing tripod holding the poexi-.

Klas frame with inserted electrodes. The power supply and capacitor are housed

in a plexiglas box as a safety precaution.
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FiglJre 8. Typical oscilloscope trace on the monitor of an IBM PC. Trace cor' esponds to

acoustic pressure transient of a spark discharge. Positive pressure is ,31ownward

on the screen; the two large positive peaks correspond to direct wave and wave

reflected from the table.
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The data acquisition system is composed of microphones, amplifiers,an analog-to-digital

converter, and an IBM personal computer (Fig. g and Fig. 10). The system iscapable of gath-

ering data at a rate of 500 kHz which can subsequently be processed by the PC. The acoustics

laboratory VAX computer isin an adjoining room and isavailablefor more extensive computa-

tions and storage. The amplifierswere designed and builtexpressly for thisproject; other system

components were purchased. In addition, an apparatus is being designed and constructed to

quickly and preciselyposition the microphones at arbitrary points in the field.

Bruel & Kjaer quarter-inch condenser microphones are used for making the necessary pre-

cisionsound pressure measurements. The microphone sensitivity(ratioof induced open circuit

voltage to external acoustic pressure) for these microphones iscertifiedby the manufacturer be

be virtuallyconstant for frequencies up to 70 kHz, so we expect them to yield a relativelyundis-

torted response to pulses predominantly composed of frequencies between 10 and 30 kHz. The

microphones are linearin theirresponse over a dynamic range of up to 180 dB with a sensitivityof

O.1 mV/ubar.._ Bruel & Kjaer pre-amp!ifier and power supply are also part of the microphone

assembly. The pre-amplifier bas a very high inmput impedance and low parallel capacitance

which are needed to maintain the flatfrequency respollse.This high impedance isprovided by

a vacuum tube cathode follower at the input stage. The B & K 2801 power supply isused to

provide voltage to the microphone and pre-amplifier.

For the circumstances of the contemplated experiments the microphone assemblage open

circuitvoltage istypicallyof the order o[ 50 inV. Because such voltages are two low to exploit the

fuJ.ldynamic range ofthe analog-to-digitalconversion instrumentation, two low current amplifiers

were c_nstructed to magnify the voltage signal. Each amplifier contains a Motorola LF351N

FET ope-ational amplifier microchip, which has a high voltage slew rate (13 V/us) and a fiat

response over a wide range of frequencies. The design of the amplifier contains a non-inverting

voltage amplifying circuit (Fig. 11). A variable gain is achieved by an array of feedback resistors

controlled by an external multi-position switch. Frequency independent gains from unity up to

lO0 are possible. The amplifier is powered by two parallel series of 9 volt batteries. The transient

voltage level is guaranteed by parallel 0. [ uF capacitors. The amplifier is enclosed by a aluminum

box which is grounded to the batteries. The box serves as a shield against electromagnetic noise

generated by the spark generator. Shielding considerations also motivated the use of a self-

N_
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contained power supply.

The amplified analog signal is converted to digital form by an integrated hardware and

software system produced by RC Electronics Inc. and called "Computerscope I_C-16". This

system consists of a 16 channel A/D board which is inserted into a slot within an IBM PC, an

external instrument interface, and the scope driver software. The system is capable of sampling

data at a maximum aggregate rate of 0.5 MHz over as many as 16 channels. This state-of-the-art

RC system is relatively new to the market and differs from other commercially available data

interfaces for personal computers in its high data accession rate, which is adequate for acoustical

experiments at frequencies in the 10's of kilohertzes range; the 0.5 MHz sampling rate provides

50 data points per cycle for a 10 kHz signal. The system effectively transforms a personal

computer into a low cost transient recorder or digital storage oscilloscope and should allow a

greater flexibility in the digital processing of acoustical data. The system allows an input voltage

signal with a peak to t.*eak range of 20 volts centered at zero to be resolved to 12 bit accuracy,

or equivalently to 1 part in 4000. The incoming transient signal is stored within a 64 kilobye

memory buffer. Various modes of triggering are possible. In particular, an external channel is

provided exclusively for triggering without occupying any memory space, although it is possible

to trigger off of anothe, channel or off of threshold levels of slope or amplitude. The Scope Driver

software allows for flexible manipulation and display of the captured data. The display is similar

to that of an oscillcecope. We anticipate that all of the n_essary spectrum analysis and transfer

function calculations can be carried out, subsequent to data capture, by the host IBM PC, but

the acoustic group's _,AX in the adjoining room is available for computations too involved o_

lengthy for the personal computer.
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Figure 9. Photograph of part of the experimental equipment sho_'ing microphone power

supplies, the amplifiers whose design and construction are described in the text,

and the monitor of the IBM personal computer. A typical transient acoustic

pressure trace from a single microphone can be seen on the r, ...... r screen.
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Figure 10. Photograph of the IBM personal computer with peripheral equipment which

allows it to function as a digital storage oscilloscope or transient recorder.

Corner of table facility of model topographical ridge can be seen at the far left.

Cables from microphone assemblages lead to RC Electronics instrumentation

interface, which in turn is connected to 16 channel high spe,',] 12 bit A/D

plug-in withia the personal computer.
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Figure 11. Circuit design for noninverting amplifiers that were constr,i ........ inte,'face

between microphones and A/D conversion instrumentation.
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ANALYTICAL STUDIES

Successfulapplicationof theoreticalacousticsto outdoorpropagationoverundulatingter-

rain is in principlepossible,but presentschallenges.Theauthors'considerationsarepresently

limited to whenthe terrain is slowlyvaryingoverdistancescomparableto a wavelength;many

realisticoutdoorsituationsshouldbewell-modelledwithout violationof sucha restriction.The

overallhopeis that asymptoticandmatchingtechniquescanenableoneto splicetogethermath-

ematicalmodelsfor intricatecircumstances(suchasmultipleundulations)fromthosefor simpler

circumstances.

Diffraction by a single ridge of finite impedance

In the research program currently in progress, the understanding of diffraction by a single

smooth ridge (Fig. 12) is a key element. Diffraction by a curved surface has a venerable and

extensive literature, although much of it is specifically written for electromagnetic wave applica-

tions. There is need for a readily assimilable treatment of acoustic di_raction by curved surfaces

of finite impedance that is easily adaptable to servitude as a building block for a broader theory for

propagation over irregular terrain. One desires simple analytical models or computational algo-

rithms that are applicable on the surface and throughout the transition between illumination and

3hadow, not just deep within the shadow zone. Consequently, curved surface diffraction has been

examined afresh, using the modern conceptual framework of matched asymptotic expansions.

The theoretical work on the project to date has been especially influenced by the work of V. A.

Fock [1], who wrote a number of important papers on electromagnetic wave diffraction during the

1940's and 1950's that were later translated and republished together in a single volume. However,

our method of derivation differs in some major details from that of Fock, and it is believed that

the fresh perspective will facilitate the extension to broader classes of circumstances.

®
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Figure 12. Source and listener on opposite sides of a topographical ridge
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Relatively simple resultshave been derived for the case when the source and listenerare on

opposite sides of a topographical ridge (F_.g.12) and the listenerisdeep into the shadow zone.

With some minor distinctions, such results have been previously stated within an acoustical

context by Hayek, Lawther, Kendig, and Simowitz [2],who adapt a theory developed by Keller

[3]to diffr_ctmn by a cylinder-topped wedge of finiteimpedance. Our results,stated here for

bcevity w;.thout a derivation,extend those of Hayek et al.to cases where the radius of curvature

and the surfi,ceimpedance may vary with position. For simplicity,we consider source and listener

to be on upposite sides _fthe ridge; the extension to the oblique incidence case can be worked

out without difficultyusing relativelysimple concepts [4].

The shortest path cot_Pecting source and listenerhas three segments, with lengths LI, Lg,

and L2. The segment of letgth LI isstraight and terminates at the ridge at point a, where the

segment is tangent to the cucved surface. Similarly,the segment of length L2 proceeds from a

tangent point b to the listenerposl_ion. The segment of length L# (g for 'ground') proceeds along

the curved top of the ridge from a to b. The surface'slocal radius R(s) of curvature and specific

impedance Zs (s) are functions of distance s along the surface. Here s - 0 corresponds to point

The limiting case for which the simplest resultsmost ideallyapply isthat where kL1, kL_,

and kL2 are all substantially larger than unity; here k isthe wavenumber 2rf/c of the sound

radiated by the source (strength S). Itis also implicitlyassumed that the listeneriswell below

the plane tangent to the ridge'ssurface at point a, which separates the illuminated and shadowed

regions. For this limiting case, the sound reaching the listenercan be regarded as carried by a

succession of 'creeping waves' that travelalong the surface from point a and which shed rays into

the shadow zone, each such ray proceeding along a straight line that irtangent to the surface;

segment L2 is a path of such a shedded ray. In the extreme limiting case of the sort considered

above, the first creeping wave term dominates the sum and the complex amplitude of the acoustic

pressure can be written

_2

Here L = Ll +L2 _-L¢ is total path length; R,_ and R_ are radii of curvature at points a and b. The

!
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ground-induced phase shift ¢_ and the ground-induced attenuation Na in nepers are respectively

_, - ,_/12+ (k/2R_)_l_.(e)e. (2)

N, = (k/2R_)_/_,(q)e_ (31

Here rR and rz are reM and imaginary parts of a quantity r that is the root having smallest

imagin_y part of the equation (prime denoting derivative)

,.'_(_) - qw_(_,)= 0 (4)

where w_ (a) is a Fock functi6n [1,5], given alternatively by

[

l

in _erms of the Airy function. The root a depends on a normalized surface admittance parameter

q= iCkR/_)_/_p_/Z_ (6)

wl'/ich varies with distance s if R or Zs vary with s.

The remaining quantities A_ and Ab that enter into Eq. (1) are values at a and b, respectively,

of a quantity A(q), defined such that

T ACq)= 2-_/'_,_-'/'[_e-''"-q_:_'/_]-'/_--"-'_""_'_-':.,_,.,ojj (T)

!

rf the surface is rigid, then q = 0 and

r = 1.0188e _'/3 -- 0.5094 + i0.8823

Ai(-re -_'/3) = 0.5357

(8a)

(8b)

I

I

I

I

a(0) = 0.TSlT

For small but nonzero q, an approprm_e approximation is

r ----1.0188e _/3 + e._/G q/1.0188

(8c)

(9)

The correction affects the exponent factor N¢ and consequentlymay be of importance; in contrast,

little harm is done if A(q) is approximated by A(0). A typical value of q can be estimated by

|
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taking R = 3 m and f = 500 Hz. A survey of ground impedance data is given by Attenborough

[6], who fits semi-empirical fornmlas to such data. Using his expression for the impedances of

grassland reported by Embleton, Piercy, and Olson, one obtains 7.19 t i8.19 for Zs at 500Hz.

Such values then lead to an estimate of

q = 0.22e i°'v2 (10)

Thus, one can regard q as small, but not necessarily negligibly small.

Higher order terms in the creeping wave series have the same form as Eq. (1), the only

distinction being that the calculations must use higher roots r, of the transcendental equation

(5), the roots being ordered according to the magnitade of their imaginary parts. The sum

beccmes slowly convergent, however, when Lg becomes sufficiently small that many of the N_

are close to zero.
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Figure 14. Direct, incident, and reflected rays at a curved surface.
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At the top of the ridge and in the region of tramsition from illumination to shadow, a

more nearly appropriate solution can be developed using the method of matched asymptotic

expansions. A prototype two-dimensional problem (Fig. 13) is when a plane wave of constant

frequency with complex pressure amplitude P, exp(ikz) reflects and diffracts at a locally reacting

(impedance Zs) curved surface whose radius ef curvature R is not necessarily constant, but is

nevertheless everywhere large compared with 1/k. One argues with confidence that the Seld

outside this surface for z < 0 can be satisfactorily predicted by geometrical acoustics [41; _-his

technique should also apply for sufficiently large positive y when z > 0. This general region

is termed the outer reqion, because in the terminology of matche,i asymptotic expansion% the

geometrical acoustics solution for this region, when extrapolated down to the vic'nity of the top

of the surface (where y _ 0 and z << R), furnishes the outer boundary condition for an inner

solution that applies near the top of the barrier surface.

The field in this outer region is a superposit_on of incident and reflected _aves, such that

p -= P,e '_" + P, (A(O)/A(?.)] '/:_e'_'°e '_t (11)

where ._ is the reflection coefficient and A(£) denotes ray tube area after propagation a distance

t from the reflection point. The reflection point (xo, yo), the local angle of incidence 9,, the local

curvature radius R, alLOt the reflected ray path length £ can all be determined for g:ven listener

coordinates (x, y) using the law of mirrors and the the mathematical description of :he surface

(Fig. 14).

Analysis of the so-derived geometrical acoustics solution for _he limiting case of points in the

vicinity of the curved surfece's top yields

p_ P,e'" 1 + _-z-_ r_.__ e'* (121

where

Q ==[(4/9)x_ _-(2/3)Ry]'/_

¢ = ('.klR_)[Q _ -(S/2T)= _ - (_/'5)R_yl

with R being the radius of curvature of the surface at the top (z = 0, y :: 0).
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Scaling parameters Lz and Ly, equal to R/(kR) t/s and R/(kR) 2/3, can be introduced such

that, when the pe -°'_ yielded by Eq. (12) above is expressed in terms of z/L= and y/Lu, the

resulting expression is independent of k and R. Since this furnishes the outer boundary condition

on the inner solution, one anticipates that the inner s¢lution should have comparable features.

To develop the inner solution, the top of the surface is approximated by a parabola y =

-z_/2R, and the Helmholtz equation is expressed in parabolic cylinder coordinates u and v, such

that

= u(1 + [_/R])

y = _(1. [_/2R]) - u_/(2R)

(14a)

(14b)

so v = 0 corresponds to the diffracting surf_e. One then sets p equal to t9 exp(iku) times

a function F of u/L_ and v/L_. The impedance boundary condition is Mso expressed in a

nondimensional form using these variables. When the derivatives of F withrespect to its nondi-

mensionalized arguments are all regarded as being of the order of unity the terms in the partial

differential equation satisfied by F become "ordered by powers of (kR)-1/3

Substantial agreement with Fock's notation is achieved if one sets

'= (2/kR) '/3, _ = UI(2'/3L=), rl= 21/SvlLv (5)

W he re

g = p,e'k"e'_'/3 C(¢,rl,q)

q = i(kR/2)l/_pc/Z,.

is an appropriately scaled and nondimensionalized surface admittance.

values of q are discussed further below./

function G satisfies the p_rabolic equation

(16)

(:7)

(Expected nurnerical

To lowest order in _he expansion parameter e, the

,OG/O_ + O'2G,"Orl _ -.- ,TG = 0 (18)

with the boundary condition

OG/Oq + qG --: 0 at _ --- 0 (1o)
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The outer boundary condition (here imprecisely stated,for brevity) is that Eq. (16) match Eq. (12)

at largepositiveY cr largenegativez.

The generalsolutionofthe above posed boundary valueproblem can be developedby Fourier

transformand complex variabletechniques,with the result

q)= - ,) - (20)
qwt (_)OO

where v(_) and wx(_) (as well as the functions u(_) and w_(_) defined further below) are Fock

functions [5] and simply related to Airy functions of complex argument. (The precise definition

of these functions is given further below.) The integral solution (20) is trivially related to what

is termed [4,5] Fock's fcrm of the van der Pol-Bremmer diffraction formula.

Field on top surface of ridge

One simple limiting case of interest is the acoustic pressure on the surface of the ridge, which

is

p _e'kZe'_'/_G [c= ,,,0, q) (21)

and corresponds to r/= 0. From Eq. (20) one obtains

c(_,o,q) = ,r-'/' rwi(_)_(_) ttt (O) IOl (O) ] ela {
o_ wiCa ) qw,(a) J da (21)

However, the numerator in the bracketed term in the integrand here is a wronskian of two solutions

of the Airy differential equation, so it must be a constant. One finds, after pluggiug in the leading

asymptotic expression for large positive z, that the constant is simply l, so one has

w'tv-wzv' = 1 (22)

and, consequendy,

_oo e'" _G(_, O,q) : • - _"=

Here q is the normalized surface admittance defined in Eq. (17) and _ is (u,"R)(kR/2) _/_, with

u being interpreted _ being approximately the distance s along the surface from the top of the

ridge down the ohaded side. A more precise identification is that s is u-_ (u_/6R2!, such that

the sum of the exponents in the factors _,h_ and e'_'/a, whish appear in Eq. (21), is iks. Thus

one would rewrite that equation as

p : P,e '_° G((,O,q) (24)



NAG-I-566 Semiannual Report, page 31

A form of Eq. (23) that is more appropriate for computation at small to moderate values

of _ ca,_ be developed by first deforming the integration contour from the real axis to a broken

contour that goes from ¢x_e_2"/_ to the origin and then to c_ along the positive real axis. If one

uses 8 to denote distance from the origin along the first leg of this contour and recognizes that

,_,(_e _'/3) = e"/3 w2(8)

'_',(Be'_'/3 ) = _-"/_ w_(8)'

one can derive

G(_, 0, q) = _r- 112 f/_
% (8) - _'_"/_q,_(8)Jo dj3 + x -_/2 fo ¢¢ e"_¢,_ (_,) _ q,_ (_,) d_, (26)

The two integrals that appear here are highly convergent because at large positive real values of

their a.guments both wl and w2 approach

(27)

Thus one now has a version amenable to numerical computation.

The apparent insertion loss 20 log(1/IGI) calculated using the above formula is plotted versus

in Fig. 15. For the rigid barrier c_e, q = 0, the geometrical acoustics solution predicts a pressure

doubling at the surface, so the insertion loss must approach -6dB at large negative _.
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q = 0.22

_-_-- q -- 0

-2 -1 1

Normalized Distance (4) along Surface

i

!

[

I

Figure 15. Apparent insertion loss along the ground surface of a topograt,}: , ,I ridge.

_a,m_w_ .r_ 4_.
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A discussion of how the inner solution in Eqs. (16) and (20) above matches a further geomet-

ricalacoustics solution in the shadow zone isdeferred to future reports. Deep in the shadow zone

the appropriate version of the integral is a sum over residues from poles in the firstquadrant,

each such term giving riseto a creeping wave. This creeping wave solution isessentiallythe same

discussed earlierin the present report.

The creeping wave seriesisnot convergent at the boundary between illumination and shadow,

where _ -- rlI/2. An appropriate and suggestive form of the function G near this transition line

when T!issomewhat larger than unt W is

I+i

G = e-'else'_. - _,_13_."'{HCX)e-,.,/_x' + -5-- A_,(X)]

-.-..fe "al_ slvl oo

.o \,o_(s) _'-7-;,,, ,_8qe 3 w_ _s)l

xl/2rll/,, e''(¢-"'/'1 ds (28)t,,,,,(s)- q,_,(s)

where X = (2/_r)'/2rlI/4({-rlI/_) and AD (X) isthe diffractionintegral[4],which issimply related

to Fresnel integralsand which isinvariably present in asymptotic expressions for diffractionby

sharp edges. Additional restrictionsproduce significantanalytical simplification.

Airy and Fock functions of complex argument

As described in the preceding sections, the theory of diffraction by curved surfaces of finite

acoustic impedance involves integrals (contour integrals in general) with integrands that can be

expressed in terms of Airy and Fock functions of complex argument..rt would therefore seem

imperative that one have algorithms capable of calculating such functions to high precision for

arbitrary complex argument. The Mgorithms we found reported in the literature were developed

for functions of real argument only, so some effort was devoted to developing new a!gorithms.

The subroutines described in the present report are in a version (IBM Professional Fortran or,

briefly, Profort) of FORTRAN 77 that can be used on the IBM PC, but it is intended that they

be adapted in the near future to VAX Fortran. To achieve the de:_ir_,d accuracy with Profort

(roughly ten significant figures), it was necessary to u._e double precision. IIaM Professi,_nal
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Fortran (Profort) has complex number capabilities,but not in double precision, so the present

version does allcomplex arithmetic explicitly.

In principle,the Airy function ofcomplex argument can always be calculated from the power

seriesform

Ai(z) = c_?(z) - c2g(z) (29)

where the leading coefficients axe

c, = 3- 2/3/r(2/3) = 0.355028053887817... (30a)

= 3-"/r(1/3) = 0.25ss19403792s07..

and the intrinsic power series are

1 3
= I +

(30b)

1 l

6.5.3.2 ze + 9.8.6.5.3.2 79+''" (31a)

1 z4 4- 1 77 + 1 z L° +... (31b)
g(z)=z+4-"_ ' 7.6.4.3 10.9.7.6.4.3

In practice, however, this representation is useful for calculations only for moderately small

arguments z. The program presented here uses it only if Izt < 3.

For larger arguments, one is initially tempted to use an asymptotic series representation for

the Airy function. However, such a series is not convergent absolutely. Although the magnitudes

of successive terms may initially decrease, they eventually reach a minimum and then increase

without limit. If one keeps only those terms up to and including the term of minimum magnitude,

then this is as good as one can do with an asymptotic series. The error is of the order of magnitude

of the next neglected term. Some trial calculaticms suggested this would not be good enough

(given a desired precision of at least 1 part in 10 _) when !z] was of the order of 3 Consequently,

an alternate procedure was used.

To describe this alternate procedure, one first notes that the Airy function can alternately

be described by the contour integral

1

I
I

1 / e,i,',3.,o;ds (,32)Ai(z) = _: :_,

The contour CAt can be initially thought of as proceding in the complex s-pian_ along the broken

line which goes from cce '_"m to the origin and then to cce ''m If the argument variable z

lies, however, in the right 2/3-rd's of the complex z-plane, then the integration path CA, can
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be deformed to one that passes through a saddle point, going to this saddle point up a path of

steepest descents and then away from this saddle point down a path of steepest descents. (By

the statement that the argument variable z lies in the right 2/3-rd's of the complex plane, one

means that the phase of z lies between -2_/3 and 2a'/3. Because of the identity in Eq. (47a),

given further below, this turns out to be no real restriction.)

The applicable saddle point, obtained by setting the derivative of the exponent to zero, is at

s = iz t/2 . To change the contour to the path of steepest descents, one sets s = iz 1/2 + u such that

the exponent in the integrand can be written -(2/3)z 3/2 - ga where _ = zi/2u 2 - (ii3)u 3. The

saddle point now corresponds to u = 0 or, equivalently, to £ = 0. The path of c_e,_pest descents

is a path along which l is real; the definition of l can be refined such that the mapping of CAi to

the t-plane can be deformed to a path that goes from -_ to o¢ along the real axis. The integral

expression for the Airy function can accordingly be rewritten

= le_12131.<31:)[_ 2tAS(z)
2r J__ 2uz 1/2 - iu 2 e-C d£ (33)

where £ and u are related by

t _ = zll2u 2 - (7/3)@ (34)

The latter is a cubic equation for u as a function of l; the desired root must be zero when

£ is zero; moreover, u(_) must be a continuous function of £. The two possibilities correspond

to u(£) for small £ being either +t/z _/4 or -t/z _/_. The requirement that a contour from -c¢

to _ along the real £ axis be an admissible deformation of the mapping of CA, into the _-plane

indicates that the former choice is correct. Thus one can write

K_
. = _ (35)

zll4

where K(l) is such that If(0) = 1, and is a solution of the cubic equation

l

ti

i lK 3
I = g _ (3_)

3 z 314 "

the result being

where

The appropriate solution of the above cubic equation can be worked out with some effort,

K =--t---iz31'L [-1 +-e'"t3A _-e .... 13A-llj (37)

A ::: [(1 +- 4z3/---2 - 2zZ---/:;j
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For small values of _-_/' it is appropriate to replace the latter by its power series, which to

fourth order is

where here we abbreviate s = (31/_ /2)tz -3/'.

Since the integral of • -e_ over l from -_ to _ is x 1/_, one can derive from the above

expressions

where

1/_ _° z3/4)e -t_ dl] (40)e-(2/3)"/' [1 q- FM(£,

• K_t_-z
Fu(t,z 3/') = (K - t 2--_-_) - 1 (41)

or,equivalently, with the substitution of Eq. (37),

F (l, z3/') =
-2itz -3/' - l - ei2'_13 A 2 - e-'2/P':/3A-2

ei2_/3A 2 + e-i2_/3A -2 + 1
(42)

with

31/ t1,/3 (43)
A ±2 = [(1 + _ _ 2z3/4J

The leading term in Eq. (40) (i.e., that which results when FM is formally set to zero) is the first

term in the asymptotic expression for Ai(z).

What is achieved with the introduction of Eq. (40) is that the integrand is not oscillatory,

so the integral is highly convergent. Theintegral is done numerically using a Hermite integration

scheme [7], so that

oo 10

f [_(t, z3/4)de : Ztb, e-t_'[F_(l.,,z3/4)+ F,_(-_,z3/4)] (44)
O0

The sampling points _ and weights uS, are tabulated in the listing of the subroutine asmairy.

A similar procedure has been derived for computation of the derivative of the Airy function,

Ai'(zl- zll' [ I f_ °° z31')e -t_ ]• 2_.t/ae-1_/31""a I + xt/---_ GM(t, de (45)
O0

where

G_(l,z 3/') =-1-
2if e,,/3A + e-,,¢/3A- t

z314 I + e'_/aA _ + e-'_laA-_
(46)

4b

L
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As mentioned previously, these above integral expressions, Eqs. (40) and (46), are valid

only if the phase of z lies between -2_/3 and 2_/3. However, one can use these expressions in

conjunction with the Airy function identities

Ai(z) = e'"/_Ai(,e-'_'/3) + _-',,nAi(z,-""/_) (47,,)

Ai'Cz)= e-''/_ a.i'(,,_-'_'') + ¢,.n Ai'C,,e-",,/_) (47b)

Note that, if the phase of z is between 2_/3 and 4_r/3, then the arguments ze -_2"_/3 and ze-i4_r/3,

which appear on in the terms on the right sides of the above two equations, have phases between

-2_r/3 and 2_/3; thus each such term can be calculated using Eqs. (40) and (46).

For the computation of the Fock functions and their derivatives, we use the relations

v(z)=_*/2Ai(z)

w, (z) = e'"/62x1/2Ai(ze,2./,_)

w_(_)= _-'-/_2,'/_.xi(d '_'')

(48a)

(48b)

(48c)

such that

v'(z) = r'/2Ai'(z)

wl (z) = ei_,,/S2_rt/Z Ai, Cze,2,,/a)

w_(z) = e-'s'_/62xX/2ai'(ze -':''3)

(49a)

(49b)

(49c)

The core algorithms are consequently those that evaluate Ai(z) and Ai'(z) for arbitrary complex

argument.

The algorithms given here have been checked against Fock's tables (which appear on pages

393-412 of his E]ectromasnedc Propagation and Diffraction Problems [1]). Fock tabulates u(z)_

u'(z), v(z), and v'(z) for real z between -9 and +9 to four significant figures. The function v(z)

is just xl/_Ai(z), while

.(_):= i(,_1.,) + w_(_)) (_o)

such that

(51a)

(51b)
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If z is real, then both u(z) and vCz) are real, u(z) and vCz) are the real and imaginary parts of

wl (z), or, equivalently, the real and negative imaginary parts of w2(z). Our program's results

(believed to be accurate to 10 significant figures), when rounded off to 4 figures, agree identically

with Fock's results. For examp_,e, Fock gives u_(9) - 113.10× 10e, and we find it to be 113.095831×

i0 _ .

PAPERS AND PUBLICATIONS

The following paper will be presented at the forthcoming meeting of the Acoustical Society

of America in Cleveland, Ohio in May 1986.

Curved surface diffraction theory derived and extended using the method of

matched asymptotic expansions. Allan D. Pierce, Geoffrey L. Main, and James A.

Kearns, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Geor-

gia 30332. -- Consideration is given to the top of a wide barrier with variable radius of

curvature R. The surface has finite acoustic surface impedance Z. Because kR is assumed

large, the illuminated region can be approximated by geometric acoustics, such that plane

wave reflection rules apply locally. The intricate interference pattern between incident and

reflected ray fields assumes a tractable analytical form near the barrier top, which is sub-

sequently used in a MAE solution of the overall diffraction problem. Unambiguous length

scales result for radial and tangential distances along the barrier top. The inner solution is

developed by expressing the wave equation in terms of such scales, subsequently identify-

ing the expansion parameter as (kR)-1/3. A parabolic equation emerges, with a boundary

condition involving a scaled impedance (Z/gc)(kR)-t/3; the outer bour.dary condition re-

sults from matching to the geometric acoustics solution. Outer expansion of the solution of

the parabolic equation into the shadow zone yields an inner boundary condition on tae ray

theory solution for the diffracted wave. Results are similar to those previously derived for

electromagnetic diffraction prob,ems by V. A. Fock, but the MAE interpretation facilitates

an extension to problems of multiple barriers. (Work supported by NASA-Langley t:tesearch

Center.)
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The followingpaper willbe presentedatthe forthcomingInternationalCongress ofAcoustics

in Toronto inJuly 1986,and willappear in the proceedingsof thatcongress.

I

I

I
{

[

Sound propagation over large smooth ridges in ground topography. Allan D.

Pierce,GeoffreyL. Main, James A. Kearns, Daniel R, Benator, and James R. Parish,Jr.

SchoolofMechanical Engineering,Georgia Instituteof Technology,Atlanta,Georgia 30332.

A theorysimilarto those developedby Fock and othersduringthe 1940'sand 1950'sfor

electromagneticwave diffractionby curved surfacesappliesto acousticpropagationat low

angleswith the ground over an interveningridgeof finiteimpedance. The creepingwave

seriesisnot used at the top of the ridge or for the transitionbetween illuminationand

shadow; the analysisreduces insteadto numerical and approximate integrationof Fock's

form of the van der Pol-Bremmer diffractionformula. Laboratory scaleexperimentsare in

progressto testand guidethe analyticaldevelopments.

l:
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The following paper will be presented at the forthcoming 1986 International Conference on

Noise Control Engineering (Inter-Noise 86) in Cambridge, Massachusetts in July 1986.

Sound propagation over curved barriers. Allan D. Pierce, Geoffrey L. Main, James A.

Kearns, and H.-A. Hsieh, School of Mechanical Engineering, Georgia Institute of Technology,

Atlanta, Georgia 30332. -- A general discussion is given of wide barriers with curved tops;

examples of such are naturally occurring topographical ridges and earth berms with rounded

tops. The analytical developments reviewed are for circumstances when the local radius of

curvature R of the barrier is continuous along the surface and large compared to a wavelength.

If the source and listener are at large distances from the barrier top and the listener is deep

within the shadow zone, then the creeping wave series previously introduced into noise control

applicationsby Hayek and othersgivessimpleand accuratepredictions.The presentpaper

extends thismodel to instanceswhere the surfaceimpedance varieswith positionalong the

surface. The latterpart of the paper introducesa matched asymptotic expansion theory

that containsconcepts and resultsanalogousto those developed by V. A. Fock. Explicit

numericalresultsare given forthe acousticpressureon the surfaceof the barriernear the

pointwhere acousticshadowing begins.The extended theory alsoyieldssimple resultsfor

I the farfieldtransitionbetween illuminationand shadow.

!
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APPENDIX- COMPUTER PROGRAMS

Listing of computer programs for Airy and Fock functions

The input and output subroutines given here are temporary and intended oniy for checking

out the algorithms with a desk-top monitor. The actual program per s6 consists of subroutine Airy

and all those subroutines that it calls. Subrouti_*_ F_ck uses Airy to compute the Fock functions.

For the numericM evaluation of integrals tha_ describe the diffraction by curved surfaces of finite

impedance, programs will be written that call these two subroutines.

program Airychek
* Allan D. Pierce

* 12/25/85

double precision x,y,airyr,adryi,dairyr,dairyi,
+ vr,vi,dvr,dvi,w lr,wli,dwlr,dwli,

+ w2r,w2i,dw2r,dw2i,r,pi,angle

+

+
+

call input(r,angle)

pi = 3.1415926535897932D0

x = r*dcos(angle*pi/18ODO)

y = r*d_in(angle*pi/180DO)

call Airv (x,y,airyr,airyi,dairyr,dairyi)

call Fock(x,y, vr,vi,dvr,dvi,wlr,wli,dwlr,dwli,

w2r,w2i,dw2r,dw2i)

call printAir (x,y, airyr,airyi,dairyr,dairyi,

vr,vi,dvr,dvi,wlr,w li,dw lr,dw li,

w2r,w2i,dw2r,dw2i)

stcp
end

subroutine input(r,angle)

double precision r,angle

write (*,*) 'Program Airychek'
write (*,*) 'Version of December 1985'

write (*,*)

write (*,*)
write (*,*) 'What is magnitude of argument?

read (*,*) r

write (*,*) 'What is phase angle in degrees?

®
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.............. i,/ :; _m, mr

read

return

end

(*,*) Angle
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subroutine Fock(x,y,vr,vi,dvr,dvi,wlr,wli,dwlr,dw li,

+ w2r,w2i,dw2r,dw2i)

double precision

q-

+

+

x,y,airyr,airyi,daixyr,dairyi,

vr,vi,dvr,dvi,w lr,wli,dw lr,dwli,

w2r,w2i,dw2r,dw2i,pi,ar,ai,cr,ci,

er,ei,xl,yl,x2,y2,sr #i,tr,ti

pi = 3.1415926535897932130

az = dsqrt(pi)

_i = ODO

call Airv(x,y,airyr,Ml yi,dairyr,dairyi)

call cprod(wt,ai,airyr,airyi,vr,vi)

call

¢r --

ci =

call

er =

ei =

call

call

call

call

call

call

call

call

call

cprod ( ax ,ai,dairyr ,dairyi,dvr ,dvi )

dcos(pi/1.5DO)

dsin(pi/1.5DO)

cp rod ( x ,y,cr ,el ,x 1, y 1 )

dcos(pi/6DO)

d_n(pi/6D0)
2D0*ar

Air 9( x l,y 1,airyr_airyi,dairyr,dalryi)

cprod (ar,ai,er,ei,sr,si)

cp rod (sr,si ,airy r ,airy i,w I r ,w 1 i)

cprod (sr,si,cr,ci,tr,ti)

cprod ( tr,ti,dairyr ,dairyi,dw lr,dw l i)

cprod ( × ,y,cr ,-ci,x2,y 2 )

Airy (x2,y2,airyr,airyi,dairyr,dairyi)

cprocl (sr,-si,airyr,airyi,w2r,w2i)

cprod ( tr,.ti,dairyr ,dairyi,dw2r ,dw2i )

return

end

subroutine Airy (x,y, airyr,airyi,dairyr,dairyi)

double precision x,y,airyr,airyi,dairyr,dairyi,

+ pi,c I ,c2 5or k ,r

integer N

data

+

pi /3.1415926535897932D0/,

cl / 0.3550,805388,817D0/,
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+ c2 / 0.258819403792807D0/,

+ fork / 3.0D0/,

+ N/20/
r = dsqrt(x**2+y**2}

if (r .le. fork)

+ then

call Airy 1 (x,y, airyr,airyi,dairyr,dairyi,

± N,cl,c2)

+

else if (r .ge. fork)

then

call Airy2 (x,y,airyr,airyi,dairyr,dairyi,pi)

encl if

return

esd

.

subrout_.ne Air_l (x,y,aityr,airyi,dairyr,dairyi,

+ N,cl,c2)

double precision x,y,airyr,airyi,dairyr,dairyi,

+ br,bi,cr,ci,zetr,zeti,fr,fi,

+ gr,gi,dfr,dfi,dgr,dgi,c 1 ,c2

integer N

+

br=x

bi=y

call cprod(x,y,br,bi,cr,ci)

call cprod(x,y,cr,ci;zetr,zeti)

call serairy( zetr,zeti,N,fr _i,gr,gi,

dfr,dfi,dgr,dgi)

call cprod (x,y,gr,gi,br,bi)

airyr : cl*fr- c2*br,!
" airyi : cl*fi - c2*bi

call cprod(cr,ci,dfr,dfi,br,bO
@
._ dairyr = 0.5DO*cl*br - c2*dgr

,t dairyi : 0.5DO*cl*bi - c2*dgl

I' returnend

subroutine Airy2 (x,y,airyr,airyi,dairyr,dalryi,pi)

I

| "'

m,W , ...... ___2
i
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double precision x,y,airyr,airyi,dairyr,dairyi,

+ pi,r,phi,ar,ai ,incr,inci,phaze,
+ ara,aia,dra,dia,arb,aib,drb,dib,

+ phia,phib,phic,_rc,aic,drc,dic,
+ uar,uai,ubr,ubi,ur,ui,ci

+;,

r = dsqrt(x**2 + y**2)

phi = phase(x,y,pi)

if (phi .gt. (4D0/3D0)*pi- 1D-14) phi = phi- 2D0*pi

if (phi .It. pi/1.SD0 - 1D-14 .and.

+ phi .gt. - pi/1.5D0 + 1D-14)
+ then

call Airy2a (r,phi,airyr,airyi,dairyr,

+ dairyi,pi)

else if (phi .gt. pi/1.5D0 + ID-14 .or.

+ phi .It. -pi/1.5D0- 1D-14)

+

else

then

phia
call

phib
call

= phi-(phi/dabs(phi))*pi/l.5D0

Airy2a (r,phia,ar$,aia,dra,dia,pi)

= phia-(phi/dabs(phi))*pi/1.5D0

Air!t2a (r,phib,arb,aib,drb,dib,pi)

ar = 0.5D0

ai = (phi/dabs(phi))*dsqrt(3D0)*0.5D0

call cprod (ax,ai,axa,r,i_,airyr,airyi)
call cprod (ar ,-ai,dra,di a,dairyr ,dafiryi )

call cprod (ar,-ai,arb,aib,incr,inci)

airyr = airyr + incr

airyi = airyi + iaci
call cprod (ar ,ai,drb,dib,incr ,inci )

daaryr = dairyr + incr

dahryi = dairyi + inci

phia
call

phib
call

phic
call

ar =

ai --:

call

call

lit -:

ui =

ci :

call

call

= pi/1.SDO- 1D-15

Airy2a (r,phia,ara,aia,dra,dia,pi)

= - pi/1.5D0 + ID-15

Airy2a (r,phib,arb,_ib,drb,dib,pi)
= 0D0

Airy2a (r,phic,arc ,aic,drc,dic,pi)

dsqrt (3 DO )*O.SDO
0.5DO

cprod (a,r,ai,ara,aia,uar,uai)

cprod ( ar ,-ai,arb ,ai b, ubr ,u bi )

(uar t ubr)/2D0

(phi/ dab,(phi))*arc/2DO

(phi/ daba(phi))*aJ
,prod (ar ,-ci ,ur ,ui,air yr ,airyi )

cprod ( ar ,.ai,dr a,di a, uar ,uai )

.),



!
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call cprod (ar ,a_,drb,dib,ubr ,ubi )

ur = (uax + ubr)/2D0
ui =- (phi/ dabs(phi))*drc/2DO

call cprod (ar ,ci,t,r ,ui,d_dryr ,dairyi )

end :_"

return

end
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subroutine Airy2a (r,phi,niryr,airyi,d_firyr,dairyi,pi)

doub(e precision r,phi,airyr,airyi,dairyr,dairyi,pi,

+ u,e 1,e2,a,ar _ai,cr,ci,

+ b,br,bi,fr rfi,dfr,dtl

u = r*dsqrt(r)

el = u* dcos(1.5*phi)/l.5DO

e2 = u* ds_n(1.5*phi)/l.5DO
= dez_(-et) / (2DO*d, qrt(pi*dsqrt(r)))

ar --- a*deos(e2 +0.25D0*phi)

= - a*dsin(e2 +0.25D0*phi)

call asmairy(r,phi,fr,fi,dfr,dfi,pi)

call cprod( ar ,ai,fr ,fi,cr ,ci)

airyr = cr

• iryi = ci
b = dsqrt (dsqrt(r)/pi)*dezp(-el)/2DO

br = - b*dcos(O.25DO*phi- e2)

bi = - b*dsin(O.25DO*phi - e2)

call cprod (br,bi,d fr,dfi,cr,ci)

d_iryr = cr

d_iryi = ci

return

end

function phase(x,y,pi)

double precision x,y,px,py,pha.se,r,pi

if (x .eq. 0D0 .and. y .eq. 0D0)
t then

phase= ODO

return

end If

_f(_ab,(x)ge _ab,(y))
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+ then

py = do,sin( dabs(y)� dsqrt(x**2+y**2) )

if (x .ge. ODO .and. y .ge. ODO)

+ then

phase = py

else if (x .le.ODO .and. y .ge.ODO)

+ then

phase = pi - py

else if (x .le. 0D0 .and. y .le. 0D0)

+ then

phase = pi + py

else if (x .ge.ODO .and. y .le.0D0)

+ then

phase = - py

end if

elseif(_bs(x).le.d_bs(y))
+ then

px = dasin( dab,q(x)/ dsqrt(x**2+y**2) )

if (y .ge. 0D0 .and. x .ge. 0D0)
+ then

phase = 0.5D0*pi - px

else if (y .ge. 0D0 .and. x .le. 0D0)

+ then

phase = 0.5D0*pi + px

else if (y .le. 0D0 .and. x .le. 0D0)
+ then

phase = 1.SDO*pi - px

if (phase .gt. 4D0*pi/3n0)
_- then

phase =: phase - 2D0*pi

end if

else if (y .le.0D0 .anq. x .ge.0D0)

+ then

phase = -0.5D0*pi -*- px

end if

end if

return

end

subroutine cprod(ar,aS,br,bi,cr,ci)

double precision ar,ai,br,bi,cr,ci

cr = ar*br - ai*bi

ci = ai*br + ar*bi

4

4
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return

end

subroutine 8¢rairy (zetr ,zeti,N ,fr _,gr ,gi,dfr ,dfi,

+ dgr,dgi)

double precision zetLzeti,fr_,gr,gi.dfr,dfi,
+ dgr,dgi,denom

integer N_i

fr = 1D0

fi - 0D0

gr = 1D0

gi = 0D0
dfr = 1D0

dfi = 0D0

dgr = 1D0

dgi = 0D0

do 30 k :-= 1,N

j=N+l-k

3O

dehorn = (3D0*j)*(3D0*j-IDO)

call oaestp(denom,zetr,zeti,fr,fi)

denom : (3D0*j+ID0)*(3D0*j)

call o_estp(denorn,zetr,zeti,gr,gi)

denom = (3D0*j+2 D0)*(3D0*j)

call or,estp(denom,zetr,zeti,dfr,dfi)

dehorn = (3D0*j}*(3D0*j-2D0)

call onestp(denom,zetr,zeti,dgr,dgi)

continue

return

end

subroutine o-_estp(denom,zetr,zeti,fr_fi)

double precision denom,zetr,zeti,fr,fi,

.,- br,bi,cr,ci

br = zetr/denom

bi = zeti/denom

call evrod(br,bi,fr,fi,cr,ci)



!
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fr = 1D0 + cr

fi=ci

return

end
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subroutine asmairy (r,phi,fr,fi,dfr,dfi,pi)

double precision z(10), w(10)

double precision intr,inti,dintr,dinti,fr,fi,dfr,

+ dfi,r,phi,phia,eta, phieta,u,pi,

+ krl,kil,dkrl,dkil,kr2&i2,dkr2,dki2

data z(1) / 0.2453407083009D0/,

+ z(2) / 0.7374737285454D0/,

+ z(3) / 1.2340762153953D0/,

+ z(4) / 1.7385377121166D0/,

+ z(5) / 2.2549740020893DO/,

+ z(6) / Zzsssoeoss42sXDO/,
+ z(7) / 3.3 ;7_,545673832D0/,

+ z(8) / 3.9447640401156D0/,

+ z(9) / 4.6036824495507D0/,

+ z(10) / 5.3874808900i 12D0/

data w(1) / 0.4909215006667D0/,

+ w(2) / 0.4938433852721D0/,

+ w(3) / 0.4999208713363D0/,

+ w(4) / 0.5096790271175D0/,

+ w(5) / 0.5240803509486D0/,

+ w(6) / 0.5448517423644D0/,

+ w(7) / 0.5752624428525D0/,

+ w(8) / 0.6222786961914D0/,

+ w(9) / 0.7043329611769D0/,

+ w(10) / 0.8985919614532D0/

intr = 0D0

inti = 0D0

dintr = 0D0

dinti = 0D0

phia = phi

if (phia .gt. pi) phia = phia-2.0D0*pi

if (phia .It. -pi) phia = phia-*-2.0D0*pi

eta--- dsqrt(dsqrt(r*r*r))

phieta = (3D0/4D0)*phia

do 20 j=l,10

u = ,.0)/eta
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call steep (u,phiet a,pi,kr 1,kil,dkrl,dkil)

call steep (-u,phieta,pi_kr2,ki2,dkr2,dki2)

intr --intr + w(j)*(kr1+kr2)*dezp(-z(j)*z(j))

inti = inti + w(j)*(kil+ki2)*dezp(-z(j)*z(j))

dintr = dintr + w(j)*(dkrl+dkr2)*dezp(-z(j)*z(j))

dinti = dinti+ w(j)*(dkil+dki2)* de=p(-z(j)*z(j))

cont Inue

fr = 1D0 + intr/dsqrt(pi)

fi = inti/ dsqrt(pi)

dfr = 1D0 + dintr/ dsqrt(pi)

dfi = dinti/ dsqrt(pi)

subroutine steep(u,phietn,pi,kr,ki,dkr,dk})

double precision

+

+

+

+

+

+

+

u,phieta,pi,kr,ki,dkr,dki,

ub,ubr,ubi,dumr,dumi,ubsqr,

ubsqi,ucubr,ucubi,rr,ri,denom,

radsqr,r_dsqicad,pt,phase,

phirad,a32r,a32i,a32,pa32,

asq,phasq,a,pha,denomr,denomi,

denomsq,recipr,recipi,yr,yi,

numr,numi,newr,newi,xr,xi,br, bi

bateger kj

ub = dsqrt(3DO)*O.SDO*u

ubr = ub*dcos(phieta)

ubi = . ub*dsin(phieta)
dumr = ubr

dumi = ubi

call cprod( dumr,dumi,ubr,ubi,ubsqr ,ubsqi )

(a b,(ub).it. o.OO D )
then

call cprod(ubr,ubi,ubsqr,ubsqi,ucubr.ucubi)

numr = (8D0/9D0)*ubr- (40D0/243D0)*ucubr

numi : (8D0/9DO)*ubi- (40D0/243D0)*ucubi

numr = numr- dsq,t(3DO)*(14DO/8!DO)*ubsqi

numi = numi + dsqrt(3DO)*(14DO/81DO)*ubsqr

denomr : - numr

denomi = - 4D0/ dsqrt(3DO)- numi

recipr = denomr / (denomr**2 -+-denomi*'2)
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recipi =-denorni / (denomr**2 + denomi**2)

i call cprod(recipr,recipi,numr,numi,kr,ki)

newr = (32D0/gD0)*ubr- (100D0/243D0)*ucubr _

newi = (32D0/9D0)*ubi - (100D0/243D0)*ucubi

newr = newr + dsqrt(3DO)*(lODO/81DO)*ubsqi
newi = ncwi- d, qrt (3D0)*(10D0/81D0)*ubsqr

call cprod ( recipr ,recipi,newr ,newi,dkr ,dki )

I elseif(dabs(ub).ge.0.001D0)
1 + then

i +

2O

+

if (ub .gt. 10D0)
then

rr : ubsqr/(ubsqr**2+ubsqi**2)

ri = -ubsqi/(ubsqr**2+ubsqi**2)
a32r = 0.5DO*ubr/(ubr**2 + ubi**2)

a32i = -0.5D0*ubi/(ubr**2 + ubi**2)

do 20j= 1,10

k=5-j+l

denom= (0.5D0- k)/(k + ID0)

call onestp(denom,rr,ri,a32r,a32i)
continue

else if(ub .le.10D0)

then

radsqr = 1DO + ubsqr

radsqi = ubsqi

raA = dsqrt(dsqrt(radsqr**2 + radsqi**2))

pt = pha,e(radsqr,radsqi,pi)

if (pt .gt. pi) pt = pt - 2D0*pi

if (pt .It. -pi) pt = pt + 2D0*pi

phirad = pt/2D0

a32r = rad*dcos(phirad) - ubr

a32i = rad*&in(phirad) - ubi
end if

!

I

a32 : 4sqrt(a32r**2 + a32i*'2)

pa32 : phase(a32r,a32i,pi)

if (pa32 .gt. pi) pa32 = pa32 - 2D0*IA

if (pa32 .It. -pi) pa32 = pa32 + 2D0*pi

asq = a32**(4D0/3D0)

phasq : pa32*(4D0/3D0)

a = dsqrt(asq)

pha = phnsq/2D0

denomr = 1D0 + (asq+IDO/asq)*dcos(ghasq*pi/l.5DO)

denomi : (asq- 1DO/asq)* dsia (phasq+ pi/1,5 DO)

denornsq -- denomr**2 + denomi**2

recipr =.: denomr/denomsq

recipi ='.-denomi/denomsq
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yr =-2D0*u*ds/n(phieta)

yi =-2DO*u*dcos(phiet_)

numr = yr - denomr

numi = yi - denomi

call cprod(recipr,recipi,nurar,numi,kr,ki)

xr = (a + 1D0/a)*dc0s(pi/3D0 + pha)

xi = (a- 1DO/a)*dsin(pi/3DO + pha)

call cprod (yr,yi,xr,xi,br,bi)
numr - br - denomr

numi - bi - denomi

call cprod (recipr,recipi,numr,numi,dkr,dki)
end if

return

end

subroutine printAir (x,y,a2ryr,airyi,dairyr,dairyi,
+ vr,vi,dvr,dvi,wIr,wli,dwIr,dwli,

+ w2r,w2i,dw2r,dw2i)

real*8 x,y,airyr,airyi,dairyr,dairyi,vr,vi,dvr,dvi,

+ wlr,wli,dw lr,dw li,w2r,w2i,dw2r,dw2i

write (*,*)

write (*,*)

write(*,l)'x:',x,'y :',y

1 format (10X, A, F10.4, 10X, A, F10.4)

write (*,*)

wr_te (*,3) 'Airyr', 'Airyi', 'Derivr', 'Derivi'
3 format (12X,A,11X,A, 10X _A, 10X,A)

write (*,*)

write (*,101) airyr, airyi, dairyr, dairyi

write (*,*)

write (*,3)' vr',' vi',' dvr',' dvi'

write (*,*)

write (*,101) vr,vi,dvr,dvi
write (*,*)

write (*,3)' wlr',' wli',' dwlr',' dwli'

write (*,*)
write (*,101) wlr,wli,dwlr,dwli

write (*,*)

write (*,3)' w2r',' w2i',' clw2r',' dw2i'

write (*,*)
write (*,101) w2r,w2i,dw2r,dw2i

101 format (ix, 4D16.8)

return



end
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Program to compute pressure on ridge surface

Here we listthe computer program that was used in the computation of the curves shown

in Fig. 15 for the apparent insertion loss of the topographical ridge.

program ridgchek

* Allan D. Pierce

* 2/13/86

double precision xi,qr,qi,pi,gr,gi,g,l_s

call ridgput (xi,qr,qi)

pi = 3.1415926535897932190

call ridgint(xi,qr,q;.,gr,$,pi)

g -_ dsqrt(gr**2 + gi**2)

loss = 20DO* dloglO(1DO/g)

call prtridge(xi,qr,qi,gr ,gi g,loss)

stop

end

I0

subroutine ridgint (xi,qLqi,gr,gi,pi)

double precision xi,qr,qi,gr,gi,pi,

÷ step,sumr,sumi,x,

+ aintr,ainti

integer J,n

call step.find(xi,step,J)

sumr = 0.0D0

sumi = 0.0D0

x = 0.0DO

call rgraad(x,xl,qr,qi,a'mtr,aint" pi)

do 10 n=l,J

x = x + step

call rgrand(x,xi,qr,qi,bintr,binti,_i)

surer = sumr + aintr ÷ 4D0*bintr

sumi = sumi + ainti -_. 4D0*binti

x .-- x + step

cad rgrand(x,xi,qr,qi,aintr,ainti,pi)

sumr : sumr + aintr

sumi :: sumi + ainti

continue
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gr = step*surnr/3D0

gi = step*sumi/3D0

return

end
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subroutine rgrand(x,xi,qr,qi,intr,inti,pi)

double precision

÷

+

+

+

+

x,xi,qr,qi,intr,inti,pi,

y, vr,vi,dvr,dvi,w lr,wli,

dw lr,dw li,w2r,w2i,dw2r,dw2i,

c,s,ar,_i,br,bi,denomr,denom;.,

denomsq,recipr,recipi,cr,ci.

mult,int2r,int2ijnt lr,intli

+

y = 0D0

c = 0.5DO

s = 0.5DO*dsqrt(3DO)

call Fock(x,y,vr,vi,dvr,dvi,wlr,wli,dw lr,dwli,
w2r,w2i,dw2r,dw2i)

call cprod (-c,s,qr ,qi,ar _ai)

call cp¢od(ar,ai,w2r,w2i,br,bi)
denomr = dw2r - br

denomi = dw2i - bi

denomsq = denorar**2 + denomi**2

recipr = denomr/denomsq
recipi -- - de_omi/denomsq

ai--- ds/a(x*xi/2D0)

callcprod(ar,a_,recipr,recipi,cr,ci)

mult= d_pC-x*_i*_)/d_q,tCpi)
int2r= mult*cr

it.t21= mult*ci

call cprod(qr,qi,wlr,wli,br,bi)
denomr = dwlr - br

denomi = dwli - bi

denomsq = denomr**2 + denomi**2

recipr = denomr/denomsq

recipi = - denomi/denomsq

ar = dcos(×*xi)

ai = dsin(x*xi)

call cprod( ar,ai,r*.cipr,recipi,cr,ci )

mult = 1DO / dsqrt(pi)
intlr = mult*cr

intli = mult*ci
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intr -- intlr ÷ int2r

inti = intli + int2i

return
end

subroutine step fin d (xi,s_p ,J )

double precision xi,step_ay

integer J

+

if (dabs(xi) .it. 2D0)
then

step -- 0.05D0
else

step --0.1130/ dabs(xi)
end if

jay = 3.77D0/step

J =jay

return

end

subroutine ridgp++t(xi,qr_qi)

double precision xi,qr,qi

write (*,*) 'Program Ridgchek'

write (*,*) 'Version of February 1986'

write (*,*)

write (*,*)

write (*,*) 'What is magnitude of argllment xi? '

read (*,*) xi

write (*,*) 'What is real part of q? '

read (*,*) qr
write (*,*) 'What is imaginary part of q? '

read (*,*) qi

return

end

subroutine prtridge(xi,qr,qi,gr,gi,g,loss)
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double precision xi,qr,qi,gr,gi,gJoss

write(*,*)
w Ite(*,*)
write (*,1) 'xi = ',xi, ' qr = ',qr, 'qi = ',qi

I format (10X, A, F10.4, 10X, A, F10.4, A, FI0.4)

write (*,*)

write (*,3) ' gr', ' gi', ' g', ' loss'

3 format (12X,A,11X,A,10X,A,10X,A)

write (*,*)

write (*,101) gr,gi,g,loss

write (*,*)

101 format (Ix, 4D16.8)

return

end

Complex roots for creeping wave transcendental equation

The program listed here evaluates the ._oots of the transcendental equation in Eq. (4). The

present'version is temporary and allows the user to iterate refinements based on Newton's method

at the keyboard.

program creepwve
* Allan D. Pierce

* 2/13/86

double precision xrstart,xistart,qr,qi,

+ xrfin,xifin,gr,gi

call creeFut (xrstart,xistart,qr,qi)

call newtcrp ( xr start_xisr.trt,qr ,qi,&_ ,gi )

xrfin = xrstart - gr

xifin = xistart- gi

call prtcreep (xrstart,xist_rt,xrfin,xifin)

stop

end

subroutine newtcrp ( x,y,qr,qi,gz ,gi )

double preci ,ion x,y,qr,qi,gr,gi,ar,ai,

+ vr,vi,d vr,dvi,w I r,w li,

+ dw 1r,dw li,w2r,w 2i,dw2r,dw 2i,

+ br,bi,denomr,denomi,

+ denomsq,recipr,recipi,
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numr,numi,s,c,er,ei,cr,ci

s =0.SD0* dsqrt (3DO)

c =0.5D0

call cprod(x,y,-c,s,er,ei)

callFock(er,ei,vr,vi,dvr,dvi,wlr,wli,dwlr,dwli,

w2r,w2i,dw2r,dw2i)

call cprod(qr,qi,c,s,cr,ci)

call cprod(cr,ci,dvr,dvi,ar,m)

call cprod(er,ei,vr,vi,br,bi)

denomr = br + ar

denorni= bi + ai

denomsq - denomr**2 + denomi**2

recipr= denomr/denorl_sq

recipi= -denomi/denomsq

call cprod(cr,ci,vr,vi,a_,zd)

numr = dvr + ax

numi = dvi + ai

callcprod(numr ,numi,recipr,recipi,er,ei)

call cprod (er ,ei,-c,-s,gr ,gi )

return

end

subroutine creeput(xr,xi,qr,qi)

double precision xr,xi,qr,qi

write (*,*) 'Program Creepwve'

write (*,*) 'Version of February 1986'

write (*,*)

write (*,*) 'What is real part of q? '

read (*,*) qr

write (*,*) 'What is imaginary part of q? '

read (*,*) qi
write (*,*) 'What is real part of initial guess for root? '

read (*,*) xr

write (*,*) 'What is imaginary part of initial guess? '

read (*,*) xi

return

_nd

subroutine prtcreep(xrstt.rt,xistart,xrfin,xifin)

double precision xrstart,xistart,xrfin,xifin
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write (*,1) ' xrstart = ', xrstart, ' xrfin = ', xrfin

write (*,1) ' xistart = ', xistart, ' xifin = ', xifin

forn_at (10X, A, F10.4, 10X, A, F10.4)

return

end

q
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